A powerful Python framework for building and deploying AI agents that automate complex business processes. Combines the latest advances in AI with practical automation needs.
Key Features
- Modular Agent Architecture: Build custom agents for specific tasks
- Natural Language Processing: Process and understand unstructured data
- Task Orchestration: Coordinate multiple agents for complex workflows
- Monitoring & Analytics: Track agent performance and efficiency
- Easy Integration: Simple API for integrating with existing systems
Technical Stack
- Python 3.9+
- Flask
- LangChain
- OpenAI GPT
- PostgreSQL
- Redis for caching
- Docker for containerization
Impact
- 70% reduction in manual processing time
- 85% accuracy in automated decision making
- Significant cost savings in operational processes
Code Example
from ai_agent_framework import Agent, Workflow
# Define a custom agent
class DocumentProcessor(Agent):
def __init__(self):
super().__init__()
self.model = self.load_model("gpt-4")
async def process(self, document):
# Extract key information
extracted_data = await self.model.extract(document)
# Validate and transform
return self.validate_and_transform(extracted_data)
# Create a workflow
workflow = Workflow("Document Processing")
workflow.add_agent(DocumentProcessor())
workflow.add_agent(DataValidator())
workflow.add_agent(ReportGenerator())
# Execute the workflow
result = await workflow.execute(document_path)
Project Structure
├── src/
│ ├── agents/ # Agent implementations
│ ├── core/ # Core framework functionality
│ ├── models/ # AI model integrations
│ ├── workflows/ # Workflow definitions
│ └── utils/ # Utility functions
├── tests/ # Test suite
├── examples/ # Example implementations
└── docs/ # Documentation
Getting Started
- Install the framework:
pip install ai-agent-framework
- Create your first agent:
from ai_agent_framework import Agent
class MyAgent(Agent):
async def process(self, input_data):
# Your agent logic here
return processed_data
- Start building your automation workflows!
Documentation
For detailed documentation, visit our GitHub repository.
Contributing
We welcome contributions! Please read our contributing guidelines to get started.
License
MIT License - See LICENSE for details.